Moving Average Formelvorhersage

Bei einer Zeitreihe xi möchte ich einen gewichteten gleitenden Durchschnitt mit einem Mittelungsfenster von N Punkten berechnen, wobei die Gewichtungen für neuere Werte über ältere Werte sprechen. Bei der Wahl der Gewichte verwende ich die bekannte Tatsache, daß eine geometrische Reihe gegen 1 konvergiert, d. H. Sum (frac) k, sofern unendlich viele Begriffe genommen werden. Um eine diskrete Zahl von Gewichtungen zu erhalten, die zu einer Einheit summieren, nehme ich einfach die ersten N-Terme der geometrischen Reihe (frac) k und normalisiere dann ihre Summe. Bei N4 ergeben sich zum Beispiel die nicht normierten Gewichte, die nach Normalisierung durch ihre Summe ergibt. Der gleitende Mittelwert ist dann einfach die Summe aus dem Produkt der letzten 4 Werte gegen diese normierten Gewichte. Diese Methode verallgemeinert sich in der offensichtlichen Weise zu bewegten Fenstern der Länge N und scheint auch rechnerisch einfach. Gibt es einen Grund, diese einfache Methode nicht zu verwenden, um einen gewichteten gleitenden Durchschnitt mit exponentiellen Gewichten zu berechnen, frage ich, weil der Wikipedia-Eintrag für EWMA komplizierter erscheint. Was mich fragt, ob die Lehrbuch-Definition von EWMA hat vielleicht einige statistische Eigenschaften, die die obige einfache Definition nicht oder sind sie in der Tat gleichwertig sind, beginnen Sie mit 1), dass es keine ungewöhnlichen Werte Und keine Pegelverschiebungen und keine Zeittrends und keine saisonalen Dummies 2), dass das optimale gewichtete Mittel Gewichte aufweist, die auf eine gleichmäßige Kurve fallen, die durch einen Koeffizienten 3 beschreibbar ist), dass die Fehlerabweichung konstant ist, dass es keine bekannten Ursachenreihen gibt Annahmen. Ndash IrishStat Okt 1 14 am 21:18 Ravi: In dem gegebenen Beispiel ist die Summe der ersten vier Ausdrücke 0,9375 0,06250,1250.250,5. Die ersten vier Ausdrücke haben also 93,8 des Gesamtgewichts (6,2 ist im abgeschnittenen Schwanz). Verwenden Sie diese, um normierte Gewichte zu erhalten, die zu einer Einheit durch Reskalierung (dividieren) um 0,9375 zusammenkommen. Dies ergibt 0,06667, 0,1333, 0,267, 0,5333. Ndash Assad Ebrahim Ich habe festgestellt, dass die Berechnung der exponentiell gewichteten laufenden Durchschnitte mit overline leftarrow overline alpha (x - overline), alphalt1 ist eine einfache einzeilige Methode, die leicht, wenn auch nur annähernd interpretierbar in Bezug auf Eine effektive Anzahl von Proben Nalpha (vergleichen Sie diese Form an die Form für die Berechnung der laufenden Mittelwert), erfordert nur das aktuelle Datum (und den aktuellen Mittelwert), und ist numerisch stabil. Technisch integriert dieser Ansatz alle Geschichte in den Durchschnitt. Die beiden Hauptvorteile bei der Verwendung des Vollfensters (im Gegensatz zum verkürzten, in der Frage diskutierten) liegen darin, dass es in einigen Fällen die analytische Charakterisierung der Filterung erleichtern kann, und es reduziert die Fluktuationen, die bei sehr großen (oder kleinen) Daten induziert werden Wert ist Teil des Datensatzes. Nehmen wir zum Beispiel das Ergebnis des Filters, wenn die Daten alle Null sind, mit Ausnahme eines Datums, dessen Wert 106 ist. Geantwortet Nov 29 12 bei 0: 33Weight Moving Average In Beispiel 1 von Simple Moving Average Forecast. Die Gewichte der vorherigen drei Werte waren alle gleich. Wir betrachten nun den Fall, wo diese Gewichte verschieden sein können. Diese Art der Prognose wird als gewichteter gleitender Durchschnitt bezeichnet. Hier weisen wir m Gewichte w 1 zu. , W m. Wobei w & sub1; W m 1 und definieren die prognostizierten Werte wie folgt Beispiel 1. Wiederholen Sie Beispiel 1 der Simple Moving Average Prognose, wobei wir annehmen, dass neuere Beobachtungen mehr als ältere Beobachtungen gewichtet werden, wobei die Gewichtungen w 1, 6, w 2, 3 und w 3 .1 (wie im Bereich G4: G6 von 1 gezeigt ist ). Abbildung 1 Gewichtete gleitende Mittelwerte Die Formeln in Abbildung 1 sind dieselben wie in Abbildung 1 der einfachen gleitenden Durchschnittsprognose. Mit Ausnahme der prognostizierten y-Werte in Spalte C. Z. B. Die Formel in Zelle C7 ist jetzt SUMPRODUCT (B4: B6, G4: G6). Die Prognose für den nächsten Wert in der Zeitreihe ist nun 81,3 (Zelle C19) unter Verwendung der Formel SUMPRODUCT (B16: B18, G4: G6). Echtes Statistik-Datenanalyse-Werkzeug. Excel bietet kein gewichtetes gleitendes Datenanalyse-Tool. Stattdessen können Sie das Datenanalyse-Tool "Real Statistics Weighted Moving Averages" verwenden. Um dieses Werkzeug für Beispiel 1 zu verwenden, drücken Sie Ctr-m. Wählen Sie die Option Time Series aus dem Hauptmenü und dann die Option Basic forecasting methods aus dem Dialogfeld, das angezeigt wird. Füllen Sie das Dialogfeld aus, das in Abbildung 5 von Simple Moving Average Forecast angezeigt wird. Aber dieses Mal wählen Sie die Option Gewichtete Bewegungsdurchschnitte und füllen Sie den Gewichtsbereich mit G4: G6 aus (beachten Sie, dass keine Spaltenüberschrift für den Gewichtsbereich enthalten ist). Keiner von Parameterwerten wird verwendet (im Wesentlichen von Lags wird die Anzahl der Zeilen im Gewichtsbereich und von Jahreszeiten und von Prognosen ist standardmäßig auf 1). Die Ausgabe sieht genau wie die Ausgabe in Abbildung 2 von Simple Moving Average Forecast aus. Außer daß die Gewichte bei der Berechnung der Prognosewerte verwendet werden. Beispiel 2. Verwenden Sie Solver, um die Gewichte zu berechnen, die den kleinsten mittleren quadratischen Fehler MSE erzeugen. Verwenden Sie die Formeln in Abbildung 1, wählen Sie Data gt AnalysisSolver und füllen Sie das Dialogfeld aus, wie in Abbildung 2 gezeigt. Abbildung 2 Dialogfeld "Solver" Beachten Sie, dass wir die Summe der Gewichte auf 1 beschränken müssen, was wir tun, indem Sie auf die Schaltfläche klicken Schaltfläche Hinzufügen. Daraufhin erscheint das Dialogfeld Add Constraint, das wir wie in Abbildung 3 gezeigt ausfüllen und dann auf OK klicken. Abbildung 3 Add Constraint-Dialogfeld Als nächstes klicken Sie auf die Schaltfläche Solve (in Abbildung 2), die die Daten in Abbildung 1 wie in Abbildung 4 dargestellt modifiziert. Abbildung 4 Solver-Optimierung Wie aus Abbildung 4 ersichtlich, ändert Solver die Gewichte auf 0 223757 und .776243, um den Wert von MSE zu minimieren. Wie Sie sehen können, ist der minimierte Wert von 184,688 (Zelle E21 von 4) mindestens geringer als der MSE-Wert von 191,366 in Zelle E21 von 2). Um diese Gewichte zu sperren, müssen Sie auf die Schaltfläche OK des Dialogfelds Solver-Ergebnisse klicken, das in Abbildung 4 gezeigt ist.


Comments